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ON SHOCK WAVE PROPAGATION IN STRESSED ISOTROPIC 
NONLINEARLY ELASTIC MEDIA* 

A. G. KULIKOVSKII and E. I. SHAPOSHNIKOVA 

The relationships in weak shock waves propagating over an arbitrary elastic medium in 

lightly deformed (stressed) state are analyzed in nonlinear approximation. Hugoniot 

curves that correspond to waves propagating over an arbitrary stressed state are investig- 

ated using relations at discontinuities in quasilongitudinal and quasitransverse shock 

waves. Generally, when the initial deformation ahead of the shock wave disrupts the iso- 

tropy in planes parallel to the wave front, the Hugoniot curve represents for both the 

quasitransverseand quasilongitudinal waves a certain curve which is investigated below. 

Points that correspond to shock waves accompanied by entropy rise are indicated on seg- 

ments of that curve. In the case of quasitransverse waves this made necessary and taking 

into account in computations fourth order terms with respect to discontinuity amplitude. 

The shock wave velocity behavior and its relation to small perturbation velocities is 

investigated. Segments of the Hugoniot curve are indicated at whose points the conditions 

of /shock wave/ evolution are satisfied. It is shown that in the case of quasitransverse 

waves the conditions of evolution and those of entropy increase correspond to two differ- 

ent sets on the Hugoniot curve. Only shock waves that correspond to the intersection of 
these sets can actually exist. 

Shock waves in nonlinearly elastic media were investigated in /l-55/. (The numerous 
publications in which purely longitudinal shock waves, i.e. waves in which only the normal 
component becomes discontinuous and those in which discontinuities were analyzed in linear 

approximation, are not mentioned here.) Weak shock waves propagating in an isotropic 
elastic medium in unstressed state were the subject of detailed analysis in /l/. Some of 

the results obtained in /2-55/ are relevant to the present investigation. The dependence 
of shock wave velocity on the discontinuityofthe derivative of the displacement normal 

vector component along the normal to the wave, uniquely related to density, was investigat- 

ed, and the change of the entropy sign for quasilongitudinal waves was clarified. When 
the initial deformation is small relative to the discontinuity amplitude, the third approx- 

imation does not indicate a change of entropy in quasilongitudinal waves. The equation 
of momentum conservation and the defining equations of the medium showed the existence of 

particular types of shock waves: pure longitudinal and pure transverse. Certain corollar- 
ies were obtained in the form of inequalities. The Hugoniot curve was not considered as 
a whole in /2-5/, and shock wave evolution was not investigated. 

1. Conditions on shock waves. Properties of an elastic medium are fully deter- 
minedbyits elastic potential, i.e. by function 0 = POT (sijr S) r where U and S are, respect- 
ively, the internal energy and entropy of a unit of mass, p0 is the density in the undeform- 
ed state, i.e. when sij = 0, and Eij is the tensor of finite strains which can be defined as 
follows: 

Eij = f d’ci ; a’1’l 

C’ 

1_ &cS aq 

, b7,’ d;’ _ ,j:i “5’ ) 

where 5' = Ei are coordinates in some stationary orthogonal Cartesian coordinate system and 
J z u'i are components of the vecotr of displacements of points of the body in that coordin- 

ate system, and considered to be functions of Lagrangian coordinates E,i and time t. Re- 
current indices always imply summation. 

In an isotropic body CJ depends on sij only in terms of invariants of the tensor of eij. 
We define stress in the body in terms of the Piola-Kirchhoff asymmetric stress tensor, 

which enables us to determine the elasticity force acting on the surface in the current stress 
state by integrating with respect to 5' over the initially undeformed surface 

where nj are components of the vector normal to dX, in the orthogonal Cartesian system of 
coordinates gi. 
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It was shown in /6/ that 

(1.1) 

When analyzing the relations on discontinuities propagating over the initially undeform- 

ed state, it is sufficient to consider the case when the initial deformation is uniform and 

the discontinuity surface is represented by the plane 

E -1 r't, I' COllSl 

We shall consider discontinuities of the shock wave type on which the displacement 
derivatives with respect to coordinates and time become discontinuous, together with the 
components of the strain and stress tensors, while the displacements themselves remain con- 

tinuous. Then, using the continuity of won the discontinuity surface, we obtain the so- 
called kinematic relations at discontinuities /l/ 

IIhV i&l == 0. 1% / dL,l= I), If/W / (111 , J’ law / a&] = 0, ([al ~~ a+ - a-) 

where a- and u- the values of a behind and ahead of the discontinuity. Since nw I at :Y is 

the medium velocity, the last equation can be written as 

Iv1 .: - 1,~ Id\\. i f/:,1 (1.2) 

The second group of conditions on the discontinuity represents the conservation of energy and 

momentum. With the use of the law of mass conservation we write them as /l/ 

lo,,1 povluil = 0, 1. [@I /- ‘i, {loV [u*1 IV&] = 0 (1.3) 

Using formula (1.2) and expression (1.1) for Oijr we eliminate in the last equations 

for c', and (Tilt assuming that Lii- m= 0, and obtain 

Ia@ i ou, I 0” 1” If/~1 (1.4) 

I@1 ‘i, Id(I) / nu,,1 IrLi;I (a(r) / ihlh-)’ IL/,] (1.5) 

where Llk m-z dlL., II &, are components of tensor o/r., I OEj which become discontinuous. For specif- 

ied state ahead of discontinuity and discontinuity velocity I', system (1.4), (1.5) enables 

us to determine the changes of uh. and of entropy S. These quantities can then be used 

together with equalities (1.2) and (1.1) for determining the velocities and stresses behind 

the shock. The totality of these quantities for the state behind the discontinuity corres- 

ponding to a specified state ahead of the latter constitute a set that depends on a single, 

constantly varying parameter for which we may take the quantity V. This set which in the 

space of quantities determined behind the discontinuity represents a curve or several segments 

of curves, is called here the Hugoniot curve. 

2. Conditions on weak shock waves and conditions of entropy increase. It 
was shown in /7/ that the variation of quantities in weak shock waves coincide within third 

order terms with respect to shock amplitude with the variation of quantities in respective 

simple wave. The entropy variation is, thus, a quantity of at least the third order of small- 

ness relative to shock magnitude (this will be proved by direct calculations). Hence in the 

case of weak shock waves, which are investigated here, only the first order dependence of (1) 

on [S] need to be taken into account and terms of the form I II ,, I ‘( I s 1 , ‘1 ’ , U may be disregarded. 

It is consequently possible to assume that 0'- CD- contains [SI only in the form of the term 

I'" T,, ISI. It is, then, possible to introduce the function 

yr ~- Cl) - (I)- - (dd) / au,)- ILL&l - [lo 2’” IS1 (2.1) 

which in the considered approximation is independent of [S],and whose expansion in series in 

[IL,\ begins with quadratic terms. Equations (1.4) now assume the form 

(dY / duk)- = poV Iuk] (2.2) 

These equations link the quantities Iukl and V. After some calculations we obtain from Eq. 

(1.5) - 
pO1‘, IS1 mm 'i, (/PI' / alLi)' lUil - Y"- (2.3) 

The condition of entropy growth at the discontinuity requires that the right-hand side of the 

last formula be positive. 
Note the following corollary of Eqs. (2.2) and (2.3): the maxima of I' on the Hugoniot 

curve coincide with the maxima of S, and this also holds for the minima (of these quantities). 

We usethenotation p,,V' = a, [IL,] = .r, Iu,] = Y and Iu,l = z, and P for the vector with 

components 2, Y, and z. Equations (2.2) can now be integrated 
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where E is the running value of r = 1 r 1 and a is assumed to be some function of r on the 

Hugoniot curve. using the last formula and equality (2.2) we rewrite (2.3) in the form 

pJ0 (S - &I) = I:2 a (r) r2 - s a (El E d5 
0 

whose differentiation yields 

poT,S' (r) = 1/2 a' (r) P, poT,S" (r) = I/* a” (r) r2 -I- ra’ (r) 

The first of these equalities shows that the first derivatives of 5' and I' vanish 

simultaneously, and the second that the signs of second derivatives are the same. The first 

of these statements was proved in /8/ in a more general case. 

3. Weak shock waves in an isotropic lightly deformed body. The linear 
approximation. Since the investigation is restricted to weak shock waves and small 

deformations, and even smaller entropy variations, we represent the elastic potential of an 

isotropic elastic body in the form of expansion 

CD = 11, h112 + PI, i- llJ> + ml, + nl, 3 <- E_I‘AZ im $,I, I- 51,21.L -!F XI,4 i- poT, (S - S,I -:~ co11*t (3.1) 

1, ~~ eii, Iz -1 &ih_Eihr 1, = E,h&hjEji 

all of those coefficients are assumed constant. Formula (3.1) contains terms of up to fourth 

order with respect to Eij. Its application in the study of shock waves requires not only 

small variation of quantities in the wave but, also, small initial deformations. The last 

constraint may be disregarded but, as will be subsequently made clear, even in the case of 
small initial deformations some very interesting properties of transverse shock waves are 

disclosed /with it/. It is also possible to investigate shock waves in media for which the 

elastic potential formula does not contain Eij in powers higher than the fourth. 

When the discontinuity intensity is fairly small, it can be determined in linear approx- 

imation by restricting the expression for Y obtained from (3.1) to quadratic terms 

Y == dx2 + fy’ $ p2 + kxy +-- hxz (3.2) 

where the coordinates 5, and E, are selected so that the expression for Y does not contain 

the term yz. The coefficients in formula (3.2) are defined as follows: 

Eij’ = ‘I2 (aW, i aEj j- 8Wj i a&), I,” = Eii’ 

In this case Eqs. (2.2) are of the form used for the determination of eigenvectors and eigen- 

values of the matrix of coefficients of the quadratic form for Y. The eigenvectors define 

the variation of quantities in linear waves, while the eigenvalues determine the quantities 

ai = &,vi2 for such waves, i.e. their propagation velocities Vi,i = 1,2,3 which in linear 
approximation are the same as the characteristic velocities C, =: d :,I& in equations of the 
elasticity theory. 

If the effect of initial deformations is disregarded in formulas (3.1), one eigenvector 

that corresponds to a = pOC1* = h im 2P lies on the .r-axis and defines the variation of quant- 
ities in the longitudinal wave, and the remaining eigenvectors which correspond to the double 
eigenvalue a = P,,CsP = I" fill the yz-plane and determine the variation of quantities in 
transverse waves. 

In the considered approximation with allowance for initial deformations the surface Y= 

COIlSI. is generally a triaxial ellipsoid whose three principal axes define three mutually per- 
pendicular characteristic dimensions that correspond to three different eigenvalues of v. and, 

consequently, to the three different characteristic velocities ci. Owing to the smallness 
of initial deformations, one of the characteristic directions lies close to the 1'-axis,while 
the remaining two are in a plane which is close to the yz -plane. In this approximation a 
jump from the initial point z = 0, y = 0. J 2 Oto any point of one of the principal axes of 
the ellipsoid 'V con*1 is possible. In the considered linear approximation the set of three 
principal axes of the ellipsoid represent the Hugoniot curve. 

When considering discontinuities in nonlinear approximation it is necessary to take into 
account in the expression for \1' terms of higher order to make possible a more exact determin- 
ation of the Hugoniot curve segments which issue from the coordinate origin. The tangents to 
these are the characteristic directions in the linear approximation considered above. 
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4. Quasilongitudinal waves. The nonlinear approximation. When considering 
Y with an accuracy to third power terms with respect to initial deformations and those acquir- 

ed in the discontinuity, we have 

Y my ax3 m'm bs- (y' ~1~ z') t (1x2 -t fy2 + 62 f kxy i- hxz (4.1) 

where the coefficients are determined equalities (3.3). Assuming that y<x and z<z, we 

can represent Eqs. (2.2) in the form 

3ax2 + 2dx := ax, 2bxy + 2fy + kx = ay, 2bxz + ,2gz f hs = az 
the first of which yields 

asp,V2=2d t-3ax (4.2) 

The other two equations yield, after the elimination of OL, the apertaining branch of 
the Hugoniot curve 

y+L(l.-.$.+z), z=;-li-(1 -ex) 
2 (d-g) 

These formulas show that quasilongitudinal waves always contain transverse shock compon- 

ents (y # (3, z # 0) which, owing to the smallness of the initial deformation (k and h), are 

one order lower than those of the longitudinal wave. The entropy change calculated by formula 
(2.3) with function Y specified by equality (4.1), is defined as follows: 

2p,Z',LSl 7 I (as’ I- by* + bz2) (4.3) 

Thus the condition of entropy increase in the shock in the case of a quasilongitudinal wave 

is of the form 
ax '2 0 (4.4) 

If the material is such that a = 'I, h '- p -t 1 -t m + n> 0 , only shocks with s>O,i.e. 
rarefaction shocks, are possible in it, if however a-=cO, only compression shocks are 

possible. 

When ax> 0, the shock velocity increases with the increase of its intensity. In linear 

approximation (as x--t 0). The shock velocity becomes equal to the characteristic velocity 

c1 = Jf2d I po. The shock 'intensity x can be used for determining all parameters behind the 

wave, including the characteristic velocity behind the discontinuity 

cl+ = f(2d - C,ar) / p. (4.5) 

5. Quasitransverse wave. Equality (4.3) shows that in a nearly transverse wave, 

when r<cmax(y,z), the entropy in the third approximation with respect to shock amplitude is 

constant. Determination of the entropy change thus necessitates, as in the case of absence 

of initial deformation /l/, an extension of all expansions to fourth order with respect to 

shock intensity. Because of this we supplement the function Y by fourth order terms with 

respect to y and z 

y = 6 (y" + ~2)~ --i_ (y' i- z") (bx -‘- py -I- qz) + dx2 -t fy2 + gz2 + kxy + hsz 

6 = 'I, (I/, h A p -t 1 + '1% m -I- E), p =z SSP~~~, q = 8&s,,” 
Eliminating a from Eq. (2.2) on the shock, we obtain the Hugoniot curve equation 

z :z -_o [I, (y2 .! z’) + ky + hzl 

A, (kz - hy) (y” ~1~ z') i- bw (kz - hy) (ky + hz) - 2b (f - g) YZ 7: 0 

(5.1) 

(5.2) 

(5.3) 

If even one of the quantities k,h, f - g (i.e. &1Z3, &IQ a7 & 33’ - %ZO) are nonzero, Eq.(5.3) 

defines a curve which is the projection of the Hugoniot curve on the Y,z-plane. We are 

basically concerned with this case. When all of these quantities are zero, shock transitions 

are possible at a point with arbitrary y and 2 /l/. 
In polar coordinates Y = rcose,z z rsinO Eq. (5.3) assumes the form 

where the angle e0 is determined by the equation 

(5.5) 

accurate within terms that are multiples of n/2. 

We number axes Eq and L so as to have the numerator in the right-hand side of (5.5) 

always nonnegative. Then the sign of n is the same as that of the quantity k/h = ~~~~~~ E/. 
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The curve of Eq. (5.3) or (5.4) is shown in Fig-l. It is of the form of a loop with 

branches that approach infinity along the asymptote 

z=++ 
z(f - g) bk 
A0 (k'+ h") 

The curve has a crunode at point 0 where its branches are tangent to a new orthogonal 

axes y' and z' turned by angle 8, relative to the original axes. One of the curve branches 

must necessarily intersect the asymptote, while the other does not. Equation (5.4) implies 

that any straight line passing in the yz-plane through the coordinate origin intersects 

curve (5.3) only once. 

Fig.1 Fig.2 

The maximum size of the loop depends on parameter n. Note that the coefficients in 

Eq. (5.3) are of different orders of smallness. Thus, A,, w, and bare, respectively, of 

orders of 1, k and h which is of the order of E (initial strain), and g-f = 
(Es0 - EnO) + 0 (e’). 

( P-i+l 

If the quantity g-f is of the order of E, the loop dimensions in the yz-plane are 

finite, and the considered expansions hold only for small y and z. Because of this, it is 

only possible to talk in this case of small sections of the curve near the coordinate origin. 

If the quantity g-f is smaller than E, the loop dimensions are small, and the loop is 

entirely contained in the region of theexpansion validity. This case is particularly inter- 

esting and is mainly considered here. 
When f-g = 0 or k = 0, or h = 0, we obtain degenerate forms of curve (5.3) rep- 

resented by a circle intersected by a straight line. 

Let us now indicate those sections of the Hugoniot curve which correspond to an entropy 

increase. Using formulas (2.3) and (5.1), for quasitransverse waves, we obtain 

2p~~,I~l=--~e(y~+z~)(y~+~~+ +y + +, 

(the quantity A,, has been previously defined). For materials whose elastic properties sat- 

isfy the condition A,>O, the points lying within the circle 

(yj_ +(Z+_!+E!$ (5.6) 

correspond to entropy growth, while in the case of material with A,, < 0, the region outside 

that circle corresponds to such growth. 

Circle (5.6) passes through the coordinate origin and is tangent to line LK normal to 

the asymptote (Fig.2). The circle intersects the Hugoniot curve at point 0 and at twoother 

points, one of which lie on the "loop" and the other on the "branch". The cases of A,>0 
and A,< 0 correspond to entropy circules lying on the opposite sides of the LK line. The 
curves shown in Fig.2 relate to the case when n > 0, kh > 0 and f-g=_tJt and the dash 

lines represent there sections of the Hugoniot curve where [Sl(O. For other relations 

between parameters we obtain the same pattern but turned relative to initial axes by angles 
that are multiples of n 12, or as mirror reflections (when n < 0). Note that the 

radius of circle (5.6) is always of the order of E, including the case when the loop is of 

finite dimensions. 

6. Velocity of quasitransverse shock waves. Using system (2.2) and formula 

(5.1) we can determine atevery point of the Hugoniot curve the quasitransverse shock wave 

velocity 

a y ['"V * Y 2f COP* 0 -t 2g sin 't) - (1) (k ros 0 _I- h sin 13)2 - 3A,b-‘r (k cos 0 L- IL sin 6) - 2A,r? (6.1) 

where r is taken from Eq. (5.4). 
In the y'- and z/-axes drawn tangent to the loop at point 0, the expression for wave 



where ci- and ci+ are characteristic velocities ahead and behind the shock wave, respectively. 

The numeration is selected that CR <: c;! 1 c,- and C, + r< $1 < c,+. The longitudinal wave 

characteristic velocity c,- exceeds c,- by a finite quantity, hence the inequality li < c,- 

as well as the condition that C'>O are always satisfied for a weak transverse wave. 

Let us indicate the regions of validity of inequalities (7.2) on the Hugoniot curve. _~ 

the 
to 

Using equality (6.1) we represent the dependence of the discontinuity velocitv I- ~~ 1; aion on , II 
polar angle m (Fig.3)-in which the left diagram corresponds to A,> 0 and the 'right one 
A” < 0. 

I I I v I 
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(I = f + g - (,) v 
(6.2) 

t [I (rVt - .\/)'-;-3(.l/t + ,\.)(iV-‘l1)-44t-$-$-] x (1 + P)-'(/V-W' 

t = tgrp, 'p = 8 - O,,, .I1 -7 h cos 0,-k sin O,, N = h sin 13,) + k cm Ou 

In conformity with the definition of q radius r approaches zero along the Hugoniot curve 

from two directions: 'p : 0 and Cp=nl2 
propagating at the characteristic velocitiei 

which corresponds to two lineartransverse waves 

velocity is of the form 

II?,:,= t,o(C;,,)x = j j- fi - C'J 
i, : 
4-k && 

(6.3) 

As implied by (5.6), the sign of lzil is always the same as that of 2sinO,, so that when kh#CJ 

always cr-> c:(-. It can be shown that higher characteristic velocities always correspond to 

that section oftheHugoniotcurve branch where IS] 20, and the lowest to the similar section 

of the loop. The remainder c?- - cQ- = 20~lrl~C 1 i I? is small, but the characteristic velocities 

C2 and c3- are not the same when (a, F12 *la .,- 70 . The curve r(v) approaches infinity along the 

asymptote as q-+ v* := arc tg ()I/ / :V) 
The shock wave velocity increases with increasing intensity. 

7. Evolution of shock waves. Entropy growth is not a sufficient condition for 

the possibility of shock wave occurrence. It is necessary to ascertain in addition that the 

conditions of correctness (or of evolution) of boundary conditions at the discontinuity /7,9, 

lO/ are satisfied. The conditions of evolution specify that the number of characteristics 

issuing from the discontinuity in both directions must be by one smaller than the number of 

boundary conditions at the discontinuity. 
Since the velocity of a quasilongitudinal wave exceeds by a finite quantity the character- 

istic velocities of transverse waves, it is sufficient for the evolution of a weak quasilong- 

itudinal wave that the conditions 

Cl - ,: v /; Cl+ (7.1) 

are satisfied. It follows from (4.2) and (4.5) that these conditions are satisfied when 
Qf > 0. As previously shown, the last of these conditions ensures that the entropy in shock 

waves does not decrease. Thus in the approximation considered here, the condition of entropy 

growth and the conditions of evolution coincide in the case of longitudinal shock waves. 

The conditions of evolution of quasitransverse waves stipulates that one of the following 

two systems of inequalities must be satisfied: 

Fig.3 Fig.4 



On shock-wave propagation in elastic media 373 

As previously indicated, the dependence of all quantities on v is periodic of period n. 

One of such periods is shown in the diagrams; it ends with r approaching infinity along the 

Hugoniot curve branches, shown in Figs.1 and 2. 
The segment of curve j'(q) between points A and !j corresponds to the loop in Figs.1 

and 2, while its remaining part corresponds to branches. The points of intersection of that 

part of curve V(q) , which corresponds to the loop, with the straight lines V = c,- and 

V == cg- shown in Fig.3 can be absent, dependingonthe properties of the medium and on the 

type of initial deformation. This case is presented in the diagrams by dashed lines. Using 

formula (6.2) it is possible to show that curve V(q) has always three extrema. As shown in 

/8/, points of the Hugoniot curve at which extremal velocities obtain are "Jouguet" points, 

where the wave velocity V is equal to one of the characteristic velocities ci+ behind the 

discontinuity and the remainder 1' - c,+ changes its sign at that point. Thus, the points 

of extremal values of V may be taken togehter with points at which the equalities 1' :: c,-, 

as the boundaries of evolution regions. The parts of curves r'(v) along which the evolution 

conditions (7.2) are satisfied are shown in Fig.3 by heavy lines. The respective parts of 

the Hugoniot curve are drawn in Fig.2 by solid lines (they correspond to the solid line curve 

in Fig.3). 
As shown above, the maxima and minima of i' coincide with the maxima and minima of S on 

the Hugoniot curve, which enables us to state that the evolutionary parts of curve V (cp) 

adjacent to points A and 0, and the respective parts of the Hugoniot curve always lie in 

the region Is1 >: 0. Indeed, as the distance from points A and H increases along that curve, 

the quantity IS] increases. 
The conditions of entropy growth must be checked along the remaining parts of the 

Hugoniot curve where the conditions of shock evolution are satisfied. On the other hand, not 

all parts of the Hugoniot curve where \,'$I >, 0 automatically satisfy the conditions of evolu- 

tion, since nonevolution sections of that curve always adjoint points at which IS1 reaches its 

maximum. 

Relations between the shock-wave velocity and the characteristic velocitiesareconvenient- 

ly represented curves, as in Fig.4 with c;- and c,* are taken along the coordinate axes. The 

shaded rectangles correspond to regions where the evolution inequalities (7.2) are satisfied_ 
Points A, 11 and D at which ci- 1 cii correspond to initial states for shock waves. 

Points of the curve in Fig.4 represents the wave velocity in relation to characteristic veloc- 

ities. At its intersections with vertical lines b' = ci- and at those with horizontal lines 
1' = CI'. Sections of the curve that lie in shaded areas are evolutionary. 

Note that when initial deformations are absent and A,, < (l,onlyonepartofthe Hugoniot 

curve remains evolutionary for quasitransverse waves. In Fig.2 that part lies to the left of 

point I1 which in this case merges with point A. When A,,) 0 and initial deformations are 

absent, the Hugoniot curve has no sections for the evolution of quasitransverse waves. Thus 

in the absence of initial deformations of evolution and of entropy growth coincide, and the 

evolution condition is generally the stronger one. 
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